
Homework: 51, 54, 59, 60 (pages 503, 504) 



51. A sphere of radius 0.500 m, temperature 27.00C, and emissivity  
0.850 is located in an environment of temperature 77.00C. At what  
rate does the sphere (a) emit and (b) absorb thermal radiation? (c)  
What is the sphere’s net rate of energy exchange? 
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54. If you were to walk briefly in space without a spacesuit while far 
from the Sun (as an astronaut does in the movie 2001), you would feel 
the cold of space – while you radiated energy, you would absorb almost 
none from your environment. (a) At what rate would you lose energy?  
(b) How much energy would you lose in 30 s? Assume that your   
emissivity is 0.90, and estimate other data needed in the calculations. 
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(a) The heat transfer mechanism is radiation: 
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(b) The energy lost in 30 s is: 
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59. In Figure a, two identical rectangular rods of metal are welded  
end to end, with a temperature of T1=0

0C on the left side and a  
temperature of T2=100

0C on the right side. In 2.0 min, 10 J is  
conducted at a constant rate from the right side to the left side. How 
much time would be required to conduct 10 J if the rods were welded 
side to side as in Figure b. 
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The heat transfer mechanism is conduction: 
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so, the requested time is 2.0/4=0.5 min or 30 s. 



60. The figure below shows the cross section of a wall made of three 
layers. The thicknesses of the layers are L1, L2=0.750L1, and  
L3=0.350L1. The thermal conductivities are k1, k2=0.900k1, and  
k3=0.800k1. The temperatures at the left and right sides of the wall 
Are 30.00C and -15.00C, respectively. Thermal conduction through  
the wall has reached the steady state. (a) What is the temperature 
difference T2 across layer 2 (between the left and right sides of the 
layer)? If k2 were, instead, equal to 1.1k1, (b) would the rate at  
which energy is conducted through the wall be greater than, less than, 
or the same as previously, and (c) what would be the value of T2? 
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(b) conductivity k increases  conduction 
rate increases. 

(c) Repeat the calculation in part (a): 
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Chapter 3 The Kinetic Theory of Gases  
 
3.1. Ideal Gases  

  3.1.1. Experimental Laws and the Equation of State  

  3.1.2. Molecular Model of an Ideal Gas 

3.2. Mean Free Path 

3.3. The Boltzmann Distribution Law and The Distribution of 

Molecular Speeds 

3.4. The Molar Specific Heats of an Ideal Gas 

3.5. The Equipartition of Energy Theorem 

3.6. The Adiabatic Expansion of an Ideal Gas 



Work Done by an Ideal Gas at Constant Temperature 

V

1
constant

V

1
nRTp 

A process at constant temperature is  
called an isothermal expansion/compression. 
The equation of state for n moles: 

The work done during an isothermal process:   
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Summary 

The equations below allows us to calculate work done by the gas for 
three special cases: 
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Checkpoint 1: An ideal gas has an initial pressure of 3 pressure 
units and an initial volume of 4 volume units. The table gives the 
final pressure and volume of the gas (in those same units) in 5  
processes. Which processes start and end on the same isotherm? 

a b c d e 

p 12 6 5 4 1 

V 1 2 7 3 12 



3.1.2. Molecular Model for an Ideal Gas 

In this model: 
 

1. The molecules obey Newton's laws of motion. 
 

2. The molecules move in all direction with equal probability. 
 

3. There is no interactions between molecules (no collisions  
between molecules). 

 
4. The molecules undergo elastic collisions with the walls. 
 
Simulations: 
 
http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=25 
 
http://www2.biglobe.ne.jp/~norimari/science/JavaApp/Mole/e-gas.html 

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=25


a. Pressure, Temperature, and RMS Speed 

First, we consider a cubical box of edge length L, containing n moles 
of an ideal gas. A molecule of mass m and velocity v is about to 
collide with the shaded wall. 

Key question: What is the connection between the pressure p exerted 
by the gas and the speed of the molecules?  

Problem: Let n moles of an ideal gas be confined in a cubical box of 
volume V, (see the figure below). The walls of the box are held at 
temperature T. 

For an elastic collision, the 
particle’s momentum (=m.v) along  
the x axis is reserved and     
change with an amount: 
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The average rate at which momentum is delivered to the shaded 
wall by this molecule: 
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The pressure exerted on the wall by this single molecule: 
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The average value of the square of the x components of all the 
molecular speeds: 
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As all molecules move in random directions: 
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The square root of     is called the root-mean-square speed: 2v
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This relationship shows us how the pressure of the gas (a macroscopic 
quantity) depends on the speed of the molecules (a microscopic quantity) 
 



b. Translational Kinetic Energy 

• Consider a single molecule of an ideal gas moving around in the box 
(see Section a) . 
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The Boltzmann constant k:  
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Homework: 13, 14, 18, 20, 24 (p. 531-532) 


